This authoritative, expanded and updated second edition of Encyclopedia of Machine Learning and Data Mining provides easy access to core information for those seeking entry into any aspect within the broad field of Machine Learning and Data Mining.
A paramount work, its 800 entries - about 150 of them newly updated or added - are filled with valuable literature references, providing the reader with a portal to more detailed information on any given topic.
Topics for the Encyclopedia of Machine Learning and Data Mining include Learning and Logic, Data Mining, Applications, Text Mining, Statistical Learning, Reinforcement Learning, Pattern Mining, Graph Mining, Relational Mining, Evolutionary Computation, Information Theory, Behavior Cloning, and many others.
Topics were selected by a distinguished international advisory board.
Each peer-reviewed, highly-structured entry includes a definition, key words, an illustration, applications, a bibliography, and links to related literature.
The entries are expository and tutorial, making this reference a practical resource for students, academics, or professionals who employ machine learning and data mining methods in their projects.
Machine learning and data mining techniques have countless applications, including data science applications, and this reference is essential for anyone seeking quick access to vital information on the topic.
About the Author Claude Sammut is a Professor of Computer Science and Engineering at the University of New South Wales, Australia, and Head of the Artificial Intelligence Research Group.
He is the UNSW node Director of the ARC Centre of Excellence for Autonomous Systems and a member of the joint ARC/NH&MRC project on Thinking Systems.
He is on the editorial boards of the Journal of Machine Learning Research, the Machine Learning Journal and New Generation Computing, and was the chairman of the 2007 International Conference on Machine Learning.
Geoffrey I.
Webb is research professor in the facult.
Springer este o companie de editură proeminentă la nivel mondial, specializată în literatura academică și științifică.
Fondată în 1842 la Berlin, Germania, Springer a crescut pentru a deveni unul dintre cei mai mari și mai respectați editori din lume, cu birouri și operațiuni în numeroase țări.
Springer publică o gamă largă de reviste academice, cărți, lucrări de referință și baze de date online care acoperă o gamă largă de discipline, inclusiv știință, tehnologie, medicină, inginerie, matematică, umaniste, științe sociale și afaceri.
Catalogul extins al companiei include: 1.
Reviste: Springer publică mii de reviste academice evaluate de colegi care acoperă un spectru larg de discipline.
Aceste reviste prezintă articole de cercetare originale, recenzii și contribuții academice din partea experților în domeniile lor respective.
Cărți: Springer publică o selecție diversă de cărți, inclusiv manuale, monografii, lucrări de referință și titluri profesionale.
Aceste cărți acoperă o gamă largă de subiecte și se adresează cercetătorilor, studenților, profesioniștilor și practicienilor.
Lucrări de referință: Springer produce lucrări de referință cu autoritate, cum ar fi enciclopedii, manuale, dicționare și atlase, care oferă o acoperire cuprinzătoare a unor subiecte și discipline specifice.
Baze de date online: Springer oferă baze de date și platforme online care oferă acces la vasta sa colecție de conținut academic.
Aceste platforme permit utilizatorilor să caute, să răsfoiască și să acceseze literatură academică, reviste, cărți și materiale de referință.
Springer este cunoscut pentru angajamentul său față de calitate, integritate și inovație în publicarea academică.
Compania lucrează îndeaproape cu autori, editori, recenzori și instituții academice pentru a asigura cele mai înalte standarde de excelență și rigoare academică în publicațiile sale.
Prin urmare, Springer este considerată pe scară largă ca o sursă de încredere de informații academice și o resursă valoroasă pentru cercetători, studenți și profesioniști din întreaga lume.