Utilize web scraping at scale to quickly get unlimited amounts of free data available on the web into a structured format.
This book teaches you to use Python scripts to crawl through websites at scale and scrape data from HTML and JavaScript-enabled pages and convert it into structured data formats such as CSV, Excel, JSON, or load it into a SQL database of your choice.
This book goes beyond the basics of web scraping and covers advanced topics such as natural language processing (NLP) and text analytics to extract names of people, places, email addresses, contact details, etc.
, from a page at production scale using distributed big data techniques on an Amazon Web Services (AWS)-based cloud infrastructure.
It book covers developing a robust data processing and ingestion pipeline on the Common Crawl corpus, containing petabytes of data publicly available and a web crawl data set available on AWS's registry of open data.
Getting Structured Data from the Internet also includes a step-by-step tutorial on deploying your own crawlers using a production web scraping framework (such as Scrapy) and dealing with real-world issues (such as breaking Captcha, proxy IP rotation, and more).
Code used in the book is provided to help you understand the concepts in practice and write your own web crawler to power your business ideas.
What You Will Learn Understand web scraping, its applications/uses, and how to avoid web scraping by hitting publicly available rest API endpoints to directly get data Develop a web scraper and crawler from scratch using lxml and BeautifulSoup library, and learn about scraping from JavaScript-enabled pages using Selenium Use AWS-based cloud computing with EC2, S3, Athena, SQS, and SNS to analyze, extract, and store useful insights from crawled pages Use SQL language on PostgreSQL running on Amazon Relational Database Service (RDS) and SQLite using SQLalchemy Review sci-kit learn, Gensim, and spaCy to perform NLP tasks on scraped web pages such as name entity recognition, topic clustering (Kmeans, Agglomerative Clustering), topic modeling (LDA, NMF, LSI), topic classification (naive Bayes, Gradient Boosting Classifier) and text similarity (cosine distance-based nearest neighbors) Handle web archival file formats and explore Common Crawl open data on AWS Illustrate practical applications for web crawl data by building a similar website tool and a technology profiler similar to builtwith.
com Write scripts to create a backlinks database on a web scale similar to Ahrefs.
com, Moz.
com, Majestic.
com, etc.
, for search engine optimization (SEO), competitor research, and determining website domain authority and ranking Use web crawl data to build a news sentiment analysis system or alternative financial analysis covering stock market trading signals Write a production-ready crawler in Python using Scrapy framework and deal with practical workarounds for Captchas, IP rotation, and more Who This Book Is For Primary audience: data analysts and scientists with little to no exposure to real-world data processing challenges, secondary: experienced software developers doing web-heavy data processing who need a primer, tertiary: business owners and startup founders who need to know more about implementation to better direct their technical team About author(s): Jay M.
Patel is a software developer with over 10 years of experience in data mining, web crawling/scraping, machine learning, and natural language processing (NLP) projects.
He is a co-founder and principal data scientist of Specrom Analytics, providing content, email, social marketing, and social listening products and services using web crawling/scraping and advanced text mining.
Jay worked at the US Environmental Protection Agency (EPA) for five years where he designed workflows to crawl and extract useful insights from hundreds of thousands of documents that were parts of regulatory filings from companies.
He also led one of the first research teams within the agency to use Apache Spark-based workflows for chem and bioinformatics applications such as chemical similarities and quantitative structure activity relationships.
He developed recurrent neural networks and more advanced LSTM models in Tensorflow for chemical SMILES generation.
Jay graduated with a bachelor's degree in engineering from the Institute of Chemical Technology, University of Mumbai, India and a master of science degree from the University of Georgia, USA.
Jay serves as an editor of a publication titled Web Data Extraction and also blogs about personal projects, open source packages, and experiences as a startup founder on his personal site, jaympatel.
Audience | Data analysts and scientists with little to no exposure to realworld data processing challenges secondaryexperienced software developers doing webheavy data processing who need a primer tertiarybusiness owners and startup founders who need to know more about implementation to better direct their technical team |
---|---|
About author(s) | Jay |
APress este o companie de editură bine-cunoscută specializată în cărți și cărți electronice axate în primul rând pe subiecte legate de tehnologie.
Fondată în 1999, APress s-a impus ca un editor lider în domeniile informatică, tehnologiei informației, programare, dezvoltare web și subiecte conexe.
Compania publică o gamă largă de titluri care acoperă diverse limbaje de programare, metodologii de dezvoltare software, securitate cibernetică, știință a datelor, inteligență artificială, învățare automată, cloud computing, dezvoltare de aplicații mobile și multe altele.
APress se adresează atât profesioniștilor de nivel începător, cât și de nivel avansat, oferind cărți potrivite pentru auto-studiu, referință și dezvoltare profesională.
APress este cunoscut pentru angajamentul său de a publica conținut de înaltă calitate, practic și autorizat, creat de experți în domeniile lor respective.
Cărțile companiei oferă adesea informații tehnice aprofundate, exemple din lumea reală, studii de caz și tutoriale practice, făcându-le resurse valoroase pentru dezvoltatorii de software, profesioniștii IT, studenții și entuziaștii deopotrivă.
Pe lângă publicațiile tipărite, APress oferă, de asemenea, cărți electronice și conținut digital prin intermediul site-ului său web și al diferitelor platforme online, oferind cititorilor acces convenabil la biblioteca sa vastă de cărți tehnice.
În general, APress și-a câștigat o reputație de excelență în industria de publicare tehnologică, lansând continuu titluri relevante și oportune care se adresează nevoilor în evoluție ale profesioniștilor și cursanților din comunitatea tehnologică.