Springer Linear algebra and optimization for machine learning: a textbook, paperback/charu c. aggarwal
Springer

Springer Linear algebra and optimization for machine learning: a textbook, paperback/charu c. aggarwal

Vezi magazinul Elefant
  • 3 stele, bazat pe 1 voturi

This textbook introduces linear algebra and optimization in the context of machine learning.

Examples and exercises are provided throughout the book.

A solution manual for the exercises at the end of each chapter is available to teaching instructors.

This textbook targets graduate level students and professors in computer science, mathematics and data science.

Advanced undergraduate students can also use this textbook.

The chapters for this textbook are organized as follows: 1.

Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis.

Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection.

The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra.

The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts.

Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models.

The parent problem of optimization-centric machine learning is least-squares regression.

Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields.

Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems.

Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods.

A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks.

A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization.

One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning.

Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings.

Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

About author(s): Charu C.

Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.

Watson Research Center in Yorktown Heights, New York.

He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.

in Operations Research from the Massachusetts Institute of Technology in 1996.

He has published more than 400 papers in refereed conferences and journals and has applied for or been granted more than 80 patents.

He is author or editor of 19 books, including textbooks on data mining, neural networks, machine learning (for text), recommender systems, and outlier analysis.

Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM.

He has received several internal and external awards, including the EDBT Test-of-Time Award (2014), the IEEE ICDM Research Contributions Award (2015), and the ACM SIGKDD Innovation Award (2019).

He has served as editor-in-chief of the ACM SIGKDD Explorations, and is currently serving as an editor-in-chief of the ACM Transactions on Knowledge Discovery from Data.

He is a fellow of the SIAM, ACM, and the IEEE, for contributions to knowledge discovery and data mining algorithms.

  • 392.99 Lei
Cu cate stelute ai vota acest produs?

Informatii produs

Follows1
Linear algebra and its applicationsThe chapters focus on the basics of linear algebra together with their common applications to singular value decomposition matrix factorization similarity matrices (kernel methods) and graph analysis
Optimization and its applicationsMuch of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models
About author(s)Charu

Magazine foreign books

Clientii au cumparat si

Despre Springer

Springer este o companie de editură proeminentă la nivel mondial, specializată în literatura academică și științifică.

Fondată în 1842 la Berlin, Germania, Springer a crescut pentru a deveni unul dintre cei mai mari și mai respectați editori din lume, cu birouri și operațiuni în numeroase țări.

Springer publică o gamă largă de reviste academice, cărți, lucrări de referință și baze de date online care acoperă o gamă largă de discipline, inclusiv știință, tehnologie, medicină, inginerie, matematică, umaniste, științe sociale și afaceri.

Catalogul extins al companiei include: 1.

Reviste: Springer publică mii de reviste academice evaluate de colegi care acoperă un spectru larg de discipline.

Aceste reviste prezintă articole de cercetare originale, recenzii și contribuții academice din partea experților în domeniile lor respective.

Cărți: Springer publică o selecție diversă de cărți, inclusiv manuale, monografii, lucrări de referință și titluri profesionale.

Aceste cărți acoperă o gamă largă de subiecte și se adresează cercetătorilor, studenților, profesioniștilor și practicienilor.

Lucrări de referință: Springer produce lucrări de referință cu autoritate, cum ar fi enciclopedii, manuale, dicționare și atlase, care oferă o acoperire cuprinzătoare a unor subiecte și discipline specifice.

Baze de date online: Springer oferă baze de date și platforme online care oferă acces la vasta sa colecție de conținut academic.

Aceste platforme permit utilizatorilor să caute, să răsfoiască și să acceseze literatură academică, reviste, cărți și materiale de referință.

Springer este cunoscut pentru angajamentul său față de calitate, integritate și inovație în publicarea academică.

Compania lucrează îndeaproape cu autori, editori, recenzori și instituții academice pentru a asigura cele mai înalte standarde de excelență și rigoare academică în publicațiile sale.

Prin urmare, Springer este considerată pe scară largă ca o sursă de încredere de informații academice și o resursă valoroasă pentru cercetători, studenți și profesioniști din întreaga lume.

Categorii Springer

Branduri computing & information technology

Springer Linear algebra and optimization for machine learning: a textbook, paperback/charu c. aggarwal

Springer Linear algebra and optimization for machine learning: a textbook, paperback/charu c. aggarwal

392.99 Lei